
The Curtain pole problem

When rooms are decorated, it can be difficult to move furniture and fittings along the
corridors into the room that is being decorated. In this problem, we are going to consider
moving a curtain pole (or other rod) along a corridor which has a right angled bend in it.
We want to determine whether it is possible to carry the pole round this corner.

Often modellers are presented with a problem that is imprecise or not well defined, so the
first step in the modelling cycle is to clarify the purpose of the model, often by further



discussion with the customer!

Specify the purpose

Here a more detailed question is:

What is the maximum length of pole that can be taken round a right-angled corner, if
the two parts of corridor are different widths?

Next, try to get a feel for the problem by asking yourself questions and perhaps drawing
a diagram. (This is always a good start for a geometrical problem so that you can see
what is happening!)

Try this now. Assuming the pole is held horizontally, what are the physical restrictions
on moving the pole round the corner? Can you draw a diagram which illustrates this

limiting position?



Figure 1: Illustrating the limiting position

The line AB represents the space available for the pole to be moved in. From this diagram,
you can see that the length AB will depend on the angles the line makes with the walls and
the widths of the two corridors. The corridor widths are fixed for a particular building,
but the angle can vary.

By drawing lines on your diagram that touch the walls of the two corridors and the corner,

convince yourself that the length of this line varies as you change the angle.



We’ve made some progress here – we’ve looked at a simpler case of the original problem
and have now clarified the mathematical question that we need to investigate:

What is the MINIMUM length of the line AB in Figure 1?

The next stage in the modelling cycle is to:

Create the model

Make assumptions first

The mathematical model will be based on these assumptions, so here are a few to start
with:

• The rod is kept horizontal as it is moved round the bend.

• The rod is assumed to have negligible width as the width will be small compared to
the length of the rod.

• The walls of the corridor in each section are perpendicular to the floor.

Notice how all these assumptions make the model simpler to solve. However, we may
need to revise these assumptions later and make a second trip round the modelling cycle.



Can you think of any further assumptions?

Choose the variables

We now need to define some variables (with appropriate units and symbols) to describe the
problem mathematically. One variable, L, could be the length of the line AB, measured
in metres.

What other variables should be defined?



The next stage of the modelling cycle is:

Do the mathematics

Remember that the problem is to find the MINIMUM length of L as θ varies. What

mathematical techniques have you met before, that help find minimum values?

We would need to find an expression for L in terms of θ, a, and b and then differentiate
with respect to θ.

Find an expression for L. (Hint: Find angle DCA in terms of θ. Then find the lengths

AC and CB and hence the length of AB.)

Now, determine the value of which minimises L. You can use the quotient or composite
function rules (or standard results for sec and cosec ) to differentiate L with respect to θ.

Then find the values of θ for which
dL

dθ
is zero.



But does this value of θ give a minimum value for L?

We know that
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Alternatively, you can apply the Second Derivative Test to show that
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Now we can express L in terms of a and b, the widths of the corridor sections.

As 0 < θ < π
2
, we may use the properties of a right-angled triangle.
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Let Lmin be the minimum value of L.
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Hence the maximum length of pole that can be moved around the corner is
(
a

2
3 + b

2
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) 3
2
.



Although we have worked through the steps in creating the model sequentially, this may
not happen when you are working on your own real-life problems. For example, you may
need to add or modify an assumption if you come to a halt in the construction of the
model, or you may need to add extra variables. This type of recursive procedure is not
usually employed in tackling the more traditional mathematical problems in textbooks!
Also you may decide to use a numerical method (for example using mathematical software)
rather than trying to find an analytic solution by hand.

The next stage in the modelling cycle is to:

Interpret results

First, L should be a length measured in metres. Does our expression for the minimum
value of L satisfy this criteria? As a and b have dimensions of length (in this case metres),

a
2
3 and b

2
3 will have dimensions in m

2
3 . Thus Lmin will have dimensions in (m

2
3 ))

3
2 or m.

So our result in dimensionally consistent.

Does the solution seem reasonable given the physical constrains?

If a or b were very small, there would be very little space to manoeuvre and you would
expect the maximum length of the pole to be close to the width of the larger corridor.
This agrees with the result since if b → 0, Lmin → a and vice-versa.



You would also expect the maximum length of the pole to be greater than the width of
each corridor, i.e. Lmin > a and Lmin > b.

Since
(
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>
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= a and similarly for b, this also ties in with the physical

interpretation.

If the two corridors have the same width, then b = a and Lmin =
√

2
3
2 a ≈ 2.83a.

This shows the graph of L
against θ where we have
taken a = b = 1.
As you would expect the
minimum value of L occurs
when θ = π/4. This gives
L ≈ 2.83.

So if the corridors are the same width, we would expect to be able to move a horizontal
pole of length approximately 2.8 times the width of the corridor.

The final stage of the modelling cycle is to:



Evaluate the model

To evaluate the model, we need to compare the models predictions with reality.

For example suppose the corridors both have a width of 1m, the model predicts that the
maximum pole length will be about 2.8m. But does that work in practice?

You may find that holding the pole horizontally, the width of the curtain rail is significant
and a 2.8m pole is slightly too long. In which case you may want to modify your model
to include the width of the curtain rail and remove the assumption that the width is
negligible.

You may also find that you can manoeuvre a slightly longer pole round the corner by lifting
one end and working in three dimensions rather than two. Again, you could modify the
model and obtain more accurate results. On the other hand if you just want a rough
guide to the length of pole, the results from this model may suffice.

When you are satisfied that the model gives the results that you need, sum up the work
you have done in a report for those concerned.

...AND FINALLY

You may be able to extend your model to cover other situations, for example corners that
are not square or other items of furniture such as a bed which have a width.



HAPPY MODELLING!

End of main text. You can now close this page and return to the home page where you
can choose to visit a different section.

http://maths-study-skills.open.ac.uk/




Scribbles
The restrictions are the two outside walls and the inner corner. In the limiting position,
the pole would have its ends on the two outer walls (A and B) and would also touch the
inner corner (C) as shown in diagram below:

If you are not convinced, sketch out the plan
of the corridors on a piece of paper and us-
ing a thin rectangle of paper to represent the
pole, try to slide the pole around the corner.

OK



Scribbles
You should find that as the angle varies, the length of AB varies from large values (when
AB is almost parallel to the walls) to a smaller minimum value. This MINIMUM value is
the one we want to find as it will correspond to the MAXIMUM length of the pole that
can be moved around the corner.

Click on this to download a java program illustrating the problem. If you cannot open
this from here the URL is http://maths-study-skills.open.ac.uk/p4/Pole.jar OK

http://maths-study-skills.open.ac.uk/p4/Pole.jar


Scribbles

Here are some further assumptions we thought of. You may have some different ideas and
this should be expected.

• Where two walls meet, these are at a perfect right angle?

• The pole does not bend or shorten.

• There are no obstacles such as rails, pictures, fire hydrants etc. in the vicinity of
the bend.

OK



Thinks
As the adage says, ‘One picture is worth a thousand words.’ Draw a diagram to illustrate
these variables.

We defined the following variables:

• a is the width of the first corridor (m)

• b is the width of the second corridor (m)

• θ is the angle AB makes with the inner wall
of the second section. (0 < θ < π

2
)

• L is the length of AB (m)

Notice that we do not consider data at this stage, as we want to construct a general math-
ematical model which can be used for corridors of different widths, in other buildings for
instance.

OK



Scribbles
This is our approach:

∠DCA + ∠DCE + ∠ECB = π since these
angles lie in a straight line.

DCA =
π

2
− θ.

sin θ =
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BC
so BC =

b
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.
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a

cos θ
.
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a
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b
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or L = a sec θ + b cosec θ
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1

cos θ
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1
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OK



Scribbles
Here is our solution.
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b
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values of a and b are known, this equation can be solved. The solution we require will
satisfy 0 < θ < π

2
.

OK


